Glial cell line-derived neurotrophic factor is essential for neuronal survival in the locus coeruleus-hippocampal noradrenergic pathway.

نویسندگان

  • E M Quintero
  • L M Willis
  • V Zaman
  • J Lee
  • H A Boger
  • A Tomac
  • B J Hoffer
  • I Strömberg
  • A-C Granholm
چکیده

It has been shown that the noradrenergic (NE) locus coeruleus (LC)-hippocampal pathway plays an important role in learning and memory processing, and that the development of this transmitter pathway is influenced by neurotrophic factors. Although some of these factors have been discovered, the regulatory mechanisms for this developmental event have not been fully elucidated. Glial cell line-derived neurotrophic factor (GDNF) is a potent neurotrophic factor influencing LC-NE neurons. We have utilized a GDNF knockout animal model to explore its function on the LC-NE transmitter system during development, particularly with respect to target innervation. By transplanting various combinations of brainstem (including LC) and hippocampal tissues from wildtype or GDNF knockout fetuses into the brains of adult wildtype mice, we demonstrate that normal postnatal development of brainstem LC-NE neurons is disrupted as a result of the GDNF null mutation. Tyrosine hydroxylase immunohistochemistry revealed that brainstem grafts had markedly reduced number and size of LC neurons in transplants from knockout fetuses. NE fiber innervation into the hippocampal co-transplant from an adjacent brainstem graft was also influenced by the presence of GDNF, with a significantly more robust innervation observed in transplants from wildtype fetuses. The most successful LC/hippocampal co-grafts were generated from fetuses expressing the wildtype GDNF background, whereas the most severely affected transplants were derived from double transplants from null-mutated fetuses. Our data suggest that development of the NE LC-hippocampal pathway is dependent on the presence of GDNF, most likely through a target-derived neurotrophic function.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Effects of Progesterone on Glial Cell Line-derived Neurotrophic Factor Secretion from C6 Glioma Cells

Objective(s)Progesterone is a steroid hormone whose biology has been greatly studied within the confines of reproductive function. In recent years, the neuroprotective effects of progesterone have attracted growing interest. Glial cell line-derived neurotrophic factor (GDNF), is a neurotrophic factor which plays a crucial role in the development and maintenance of distinct sets of central and p...

متن کامل

Noradrenaline activation of neurotrophic pathways protects against neuronal amyloid toxicity.

Degeneration of locus coeruleus (LC) noradrenergic forebrain projection neurons is an early feature of Alzheimer's disease. The physiological consequences of this phenomenon are unclear, but observations correlating LC neuron loss with increased Alzheimer's disease pathology in LC projection sites suggest that noradrenaline (NA) is neuroprotective. To investigate this hypothesis, we determined ...

متن کامل

P75: Expression of GDNF Genes in the Cerebellum of Rat Neonate Born to Mother with Diabetes

Diabetes Mellitus as a common metabolic disorder in women of reproductive age is rising throughout the globe. Diabetes in pregnancy has various adverse outcomes on different organs development including the central nervous system (CNS) and it can cause learning deficits, behavioral problems and motor dysfunctions in the offspring. The cerebellum is a part of brain that coordinates voluntary mov...

متن کامل

GDNF prevents degeneration and promotes the phenotype of brain noradrenergic neurons in vivo

The locus coeruleus (LC), the main noradrenergic center in the brain, participates in many neural functions, as diverse as memory and motor output, and is severely affected in several neurodegenerative disorders of the CNS. GDNF, a neurotrophic factor initially identified as dopaminotrophic, was found to be expressed in several targets of central noradrenergic neurons in the adult rat brain. Gr...

متن کامل

Pii: S0306-4522(00)00079-8

Glial cell line-derived neurotrophic factor is one of the most potent motoneuron survival factors yet identified. Although retrograde transport of trophic factors to the cell body is thought to be an important process in motoneuron survival, the transport pathways that lead to interaction of glial cell line-derived neurotrophic factor with its receptors is not known. We have used a double ligat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neuroscience

دوره 124 1  شماره 

صفحات  -

تاریخ انتشار 2004